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Compactcomputational schemes for the first biharmonic problem
in a rectangle @ X bwith fourth- and second-order truncation errors
and expressed in matrix form are presented. The matrix formulation
of the fourth-order schemes is based on a kind of (p. q, r, 5] non-
coupled approach which may be viewed as an extension aof the
known non-caoupled { p, g) method-—see [6)—that uses 9-point sten-
cils to approximate the Laplacian at the [ < m interior nodes of a
gridh, with {and m standing far the number of equidistant subdivision
paints of the edges a and b, respectively. The final matrix equation
which serves as a fourth-order discrete equivalent of the problem
may be expressed in conventional formulation as a symmetric sys-
temn with § X m unknowns. For second-order schemes, the matrix
equation in its initial form is based on the non-coupled {p, g) ap-
proach emplaying 5-point stencils to approximate the Laplacian at
the / X m interior grid nodes, while the final system in its conven-
tional tormulation is again symmetric. For the specific values of p,
g, r, and s used in this paper, namely p =1, gq=2,r= 3, and s =
4, it is possible to solve the problem by means of a quasi direct
method after reducing the solution of both fourth- and second-order
schemes to the solution of two symmetric and positive definite
linear systems each of order equal to mint/, m). In addition, for the
same values of p, g, r. and 5, the employment of the SOR iterarive
method leads, after a reasonable number of iterations, to results
which agree with the ones obtained by the already mentioned quasi-
direct method of solution, The experimenmtally observed accuracy for
schemes with fourth-order truncation error {at least for the problems
considered in this paper! was also of fourth order. For schemes
with second-order truncation errors the observed accuracy was also
of second order, as it should be, since the schemes in question
express in effect the { p.q} approach for which—see [5, 7}—a formal

prooi of accuracy exists. #1994 Academic Press, Ing.

L INTRODUCTION

In solving numcerically the first problem of the biharmonic
equilion

(0¥ oxs + 0¥avy - b= f(x.y) 1y

in a rectangle ¢ X b, where both o and its normal derivative
adgian take prescribed values on the boundary, one is faced

with the fact that the system of discrete equations approximating
(1) is ill-conditioned.

There are both iterative [5] and direct [6] second-order meth-
ads for solving the above system of discrete equations which
use J-point stencils to approximale the Lapiace operator and
are hased on the so-called (2. ¢) approach. In [5] the discrete
irodet of the problem is constructed by combining the discrete
models—ceoupled (po ) approach—aof the wwo Dirichlet
problems,

Vig=§f (2a)
Vi = g. (2b)

and is solved by means of the SOR iterative method.

On the other hand, such a coupling is avoided in [6] by
incorporating the formulas for expressing the boundary condi-
tions in a unified discrete model—non-coupled {p. ¢) ap-
proach—which is solved directly. Although the direct method
of solution by employing fairly reliable band solvers is more
accurate and more efficient than the erative one, it is stated
in [6] that there is a problem of storage requirements concerning
the coefficient matrix of the sysiem to be solved. Actually. due
Lo storage limitations on an IBM 370/158 main{rame computer,
no mesh sizes of i lower than 55 were used.

In addition to the above second-order methods there is a
mcthod utilizing 9- or 5-point stencils which is due to Stephen-
son 10} and is characterized by fourth- or second-order aceu-
racy. respectively. As far as the author knows the latest miethod
which is based on the Hermite approach (Mehrstellenverfahren)
gives the best results in solving the biharmonic problem in rect-
angles,

The method in guestion uses three nodal parameters (¢,
addx, adddvyat each of the { X mm interior nodes of a reclangu-
tar grid and gives excellent results when the 37 X 3m equations
are solved directly. However, when iterative procedurcs were
used. convergence was very slow and there was also a case
where SOR fuailed to converge alter 10.000 iterations. While
ihe direct solution of the 37 X 3nr equations shows the above-
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mentioned excellent results, there is always the problem of
memory requirements for storing the elements of the band
mairix even for not very large values of / and m (e.g., for [ and
m greater than 16), since each node is now associated with a
triplet of unknown parameters. Another drawback of the method
which is in fact stated in [10] is that “*solution to the resulting
linear system of equations cannot be obtained quickly because
of lack of simple structure and positive definitness.””

The schemes presented in this paper, which again may be
of fourth- or second-order, are based on a kind of non-coupled
{2 g, r, 5) approach and aim at avoiding, as far as possible,
the weak points of numerical processing reported in [6, 10] by
giving the most possible accurate results at a moderate comput-
ing cost. Mote precisely the solatton of the final transformed
version of the system of [ X m equations, which turns out to
be symmetric and— at least for the special 4-tuple (1, 2, 3, 4) of
the computational indices p, ¢, r, and s—with positive diagonal
entries as well, may be reduced to the solution of two symmetric
and posilive definite systems of order equal to min(/, m). Under
the assumption that the coefficient matrix of the initial system
of the { X m equations is positive definite, one may conclude
by means of the Ostrowski—Reich theorem [2] that the employ-
ment of the SOR iterative procedure for solving the above
transformed version of it, will result in convergence.

The latest assumption seems more or [ess reasonable since
intuition suggests that each of the eigenvalues of the initial
discrete model of the problem {which obviously coincides with
an eigenvalue of its transformed version) is in effect an approxi-
maticon to a positive multiple of one of the natural frequencies
of an @ X b rectangular plate with clamped edges. Anyhow,
irrespectively of the validity of this assumption, the numerical
experiments showed convergence after a reasonable number of
iterations {as a matter of fact, considerably less than those cited
in {5}y in all cases where the SOR procedure was applied.

However, at this point one should note that the results ob-
tained by the methods iniroduced in this paper, while confirming
those cited in [5, 6] and without being unacceptable, are roughly
one order of magnitude less accurate than the corresponding
ones recorded in [10]. According to the author’s opinion this
1s mainly due (o the fact that Stephenson’s model with its three
nodal unknown parameters constitutes a much better substitute
for the ariginal problem than models with anly one nodal param-
eter, An additional but less significant reason might be the use
of a DEC-20 computer with accuracy between 107" and 107%—
see [2]—in conducting the experiments in [10] in contrast to
the XT personal computer (an AMSTRAD 1512} with accuracy
between [07® and 10~7 which was used to derive the results
reported in this paper.

In presenting compact schemes for the first biharmoenic prob-
lem, the material is organized as follows:

The structure of the schemes with fourth-order truncation
errors are described first, since those with second-order errors
may be viewed as a special case of the former ones. More
precisely, the basic matrix equation of the fourth-order model

581/115/2-12
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with the [ X m matrix of ¢-values at the grid nodes as unknown,
is initially introduced using the already mentioned non-coupled
(p g. r, s) approach to approximate normal derivatives at the
houndaries, Next, a series of transformations is applied to this
equation, resulting in an equivalent symmetric final linear
maodel. As it has been already stated, for (p, g, r. 5} = (1, 2,
3, 4) the diagonal entries of this symmelric system are positive
while the solution of the system itself is ultimately reduced to
the solution of two symmetric and positive definite systerns of
order equal to min{/, m). A description of such a reduction,
which may be regarded as a quasi-direct method of solution of
the original problem, follows, while the final pait of the material
concerning the fourth-order discretization schemes consists of
a series of numerical expertments. These experiments which
revealed fourth-order accuracy, are related either to procedures
serving to test the reliability of the above quasi-direct method or
to gain experience from the use of the SOR iterative procedure.

The course followed in evaluating second-order schemes—
whose structure is now based on the usual non-coupled (p,
g} approach-—is similar to that associated with fourth-order
schemes, except that very little space is devoted to presenting
the structure of the model itself. The reason for this is that such
a description would be almost a repetition of the corresponding
section concerning the fourth-order schemes, Again numerical
experiments for (p, g) = (1, 2) are conducted using both the
guasi-direct method and SOR to check the second-order accu-
racy of these schemes. The reason for selecting the values |
and 2 for pand ¢, respectively, was that this particular combina-
tion of p and g parameters is associated with the most accurate
results available—see [3, 6]—for second-order schemes.

As a final remark on the compact formation of the problem
one might note the combination of this with the capacitance
matrix approach presented in [3]). However, for both the non-
coupled {p. ¢, r. 5) and (p, §) methods the structure of the
capacitance matrix is rather complicated, while the number of
unknown parameters which must be determined is much larger
than the corresponding number in {3]. For this reason this
method is not examined in this paper.

2. COMPACT MATRIX FORMULATION OF
FOURTH-ORDER SCHEMES

A method for discretizing the first biharmonic problem in a
rectangle ¢ X b to derive computational schemes with fourth-
order truncation errors would be to combine the discrete equiva-
lents of Vi = fand V¢ = g in a single linear model by
approximating the Laplacian through 9-point stencils

I 41
4 —20 4
I 4

which have been introduced by Kantorovich and Krylov [8].
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FIGURE 1

'The approximations in question are related to a square grid of
{ X m nodes with mesh size 4 equai to the common value of
al{l + 1) or B/m + 1), where { and m denote the number of
equidistant subdivision points of the edges @ and b, respectively,
as it 1s shown in Fig. 1.

Both these problems are considered for the moment of the
Dirichlet type (although for Vg = f the values of g = 3¢/
dx* + a*¢@/ay? are not known at the edges). The discrete model
of (1), from which the unknown values of ¢ will be calculated,
emerges after the corresponding models of ¥2g = fand V¢ =
g have been combined in such a way that all the boundary
conditions are expressed by means of either known or unknown
¢-values and/or ¢-derivatives at the edges.

In particular, when searching for the discrete model of
Vig = fin a rectangle a X b one must express the values of
g = a*Plaxt + 9°@p/ay’ at the boundaries as a fourth-order
linear combination of either known or unknown ¢-values and
normal ¢-derivatives at the boundaries in question. Due to the
fact that ¢ is known at the boundaries it is obvious that 3°¢p/
dx? and 9'¢/dy* may be considered as known at (y = 0 or
¥y = b)and (x = 0 or ¥ = g), respectively, since they may
be expressed as fourth-order linear combinations of known
¢-values at the corresponding edges [4]. For example, when
y =10,

ARISTIDES TH. MARINGOS

{87/ AxT),,
= [10¢,, = 150, — 4dn, + 14¢h, — 6y, + b3, ]/(1207)
+ Ok

(' Pfax),
= {]O¢f+lu - ]5¢.’.0 - 4¢-‘—In + 14¢l—2.u - 6¢-‘-3.n + (h‘—-‘l.u}/

(3a)

(1207 + O {3b)
(8 /ax?,
= [_-qbi—!,u + Ié(bf-_l.ﬂ - 30¢f.n + l6¢r‘+l.u - ¢i+2.n]/([2hz)

£ OUy  fori= 20— I (3c)

In ather words, one should determine fourth-order approxima-
tions for /v and #*p/dx” at the boundaries (y = Dory =
b)and (x = 0 or x = a), respectively, by means of the unknown
¢-values and the prescribed normal ¢-derivatives.

Without loss of generality, such an approximation is given
for (8>d/ay),, at the edge v = 0 for i = 1(1)i. This approxima-
tion, which uses the values of ¢ at the four nodes (i, p), (i, ¢),
(i, ), and (f, s} and whose derivation is given in the Appendix,
is the following:

(@ P/, = [—(B,+ B, + B, + B, + B, &, + By,
+ B¢+ B,
—(pB, + gB, + B, ¥ sBOR(IHIAY),, )/
0.5/ (pB, + ¢°B, + B, + *B,)] + O

with

B, = (srq¥{s — r)(s — g)r — q)

B, = —(spY(s — r){s = p)r — p)
B = (sqp)(s — gls—p)q — p)

B, = —(rgp)r — g)r — p)g — p).

For (pr. g, r, s) = {1, 2, 3, 4} the latest relation (4)—after the
calculated coefficients B,, B,. B.. and B, have been divided by
48 —takes the form,

(azd’/a.\'z).‘.u = [—415¢,, + 5764—’&;: - 2l6¢’f.g + 644, .
- 9, —300(adblav),, J/(T20Y + O,
The first step in constructing the discrete model of Vig = f—
when (p, g. . 5) = (1, 2, 3, 4)—is to present the approximate
forms of the p.d.e., both at an interior grid node {f and at one
boundary node, e.g., at the f,0 node of the edge v = (. Both
of these discrete equations have fourth-order truncation errors
and run as—see also Eq. (10.3) in 2],

Interior node f;:

(1/6112)[8.‘—1.;4 + 48:‘—1.; + gi-1jm + 43.’.;-1 - 208;1 + 48i,;+1
+ gt 48.414 + giﬂ.jﬂ] = Vzgij + (h2“2) Vig.—,— + O(h"Y)
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or, since Vg, = f;.

(1/6"12)[&—1.;—1 + 485—14 + Zi-yn dg i — 2085; + 48.‘.;“
+ giri-1 T Ay T gaun] = i H (B12) = Vi, + O

(5)
Boundary node f,¢ at the edge v = O
g‘;ﬂ = (ﬁqu/(')xz),“(, + [‘4]5¢i.n + 576C,b,| — 2]6@5,2 + 64(&_3
— 9y — 300h(A/ay), W(T2HY) + OGY) (5a)

In the latest relation (5a) the quantity (#*¢p/ax®),, is considered
as known and is given by one of the formulas (3a), (3b), or
(3c) when i = 1, i = [, and i = 2{1) — 1, respeciively,
Obviously, apart from (3a) there are three other similar types
of relations corresponding to the boundary nodes, (i, m + 1),
(o, j), and {f +1, /), at the edges v = b, x = 0, and x = aq,
respectively. It is possible to express the / X m relations (5)
by means of a compact matrix equation in which the discrete
expressions for g = #*p/ax? + 3°¢/3y* at the boundary as
given, e.g.. by (5a), are also taken into account. Towards this
end, a pumber of matrices needed to formulate this compact
matrix equation must be introduced. A first group of such
matrices is the {ollowing:

F.G = Two ! X n1 matrices composed of the

values of the source term fand g =

V¢ at the interior points of the grid,

respectively. (6)

Gy, = An 7 X m matrix whose first and last
columns only may be composed of
non-zero elements. In particular, the
first and last columns contain the val-
ues of g, at the edge y = 0 and the
vatues of g+ at the edge v = b,
respectively (/| = 1, 2. .., I). {7)

G = An/ X m matrix whose first and last
rows only may be composed of non-

i

A, 3)

KANKR[ 1=

Since these four elements may be ex-
pressed as fourth-order linear combi-
nations of ¢-values on the boundary
after using relations similar to (3a),
(3b), and (3c), which are also cited
in [4], they are considered as known
quantities.

An [ X m matrix composed of the
known values of Vf; at the interior
nodes of the grid. Since the subse-
quent analysis will make it evident
that 1o construct a fourth-order dis-
crete model of (1) it suffices to ex-
press V°f; as a second-order linear
combination of f~values, one may use
the expression

Vzﬁ'j = (Uﬁhz)[ﬁﬁl.f! + 4:ﬁ—u
+ fiorn T Ao — 200 + 4f
v T A T fio

A symmetric tridiagonal matrix of or-
der v with all its diagonal elements
equal to « and all its off-diagonal
ones equal to 8. With respect to the
above matrix, it is known that the {jth
element of the orthonormal matrix V,
of its normalized eigenvectors is
equal to {2y + 1" sin [ijwi{v +
D] while its jth eigenvalue equals
o+ 28 cosljm/(v + 1} with [ =
I{(1)randj = I{1)v

A matrix operator which acts on the
I X momatrix [ ] and is defined as
follows: KANKR[ ]| = A{(—10,
40 ] + A0, DI JAL0, 1) +
[ 1A,(—10, 4).
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(9}

(10)

(1)

(12)

By means of the above notation, (6) to {12}, it is possibie

zero elements. The first and last rows
contain the values of g, ; at the edge
x = 0and gy ;at x = a, respectively
(j=12 ..,m})

= An | X m mainx whose four ‘‘cor-

ner’” elements only may be different
from zero. In particular,

(G = &an = Vi,
(Golim = Zomnt = Vi
(Cow = 8rermnr = Viehiai e
(Gt = geto = Vb

(8}

o express the set of all the I X m difference equations (5) as
a single matrix equation by employing the procedure presented
in {9], which in effect constitutes an extension of the so-called
“irrational method™ [1]. In this way the following equation
emerges:

KANKR[G] + A/(4, )G, + G A4, 1) + G, = (6O F

+ (DR VE+ Oh]. (13)
This is not the final form of the matrix equation for the discrete
madel of Vg = f, since the elements of G, and G,; may be
further expressed by means of the second ¢-derivatives and
the given first normal derivatives at the boundary, as well as
the unknown ¢-values themselves.
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Presentation of these expressions in compact form requires

ARISTIDES TH. MARINOS

the intraduction of a second group of matrices as follows:

SD.(.J!

SD_I‘.urf

FD)'.[r

FD,\‘.::d

('D~ (Dln (l)ud

= An [ X m matrix with non-zero ele-

ments only at its first and last columns.
The elements of the first column are
the (usually approximated by fourth-
order combinations of boundary
¢-values) second derivatives (92h/
dx?);, at v = 0, while the elements of
the mth column are the corresponding
quantities (A¢/x"), .1 ai the edge y =
=12 .,1).

= Ap [ X m matrix with non-zero ele-

ments only at the first and last rows,
which contain the (usually approxi-
mated by fourth-order combinations of
boundary ¢-values) second derivatives
(a*pfavhy,, and (#°P/ay7),,; at the
edges x = 0 and x = a, respectively
(j=12, ... m.

= An { X m matrix with non-zero eie-

ments only at the first and last columns.
In particular, the first column contains
the given values of +(ad/ay),, aty =
0 while the last column has the given
values of ~{dg/ v} aty = b (( =
1,2, ... 1)

An { X m matrix with non-zero ele-
ments only at its first and last rows,
which contain the given values of
+(odlax),; at x = Oand ~(3h/0x)y
at x = a, respectively (j = 1, 2,..., m).

= Three I X m matrices referring to

¢-values whose meaning is similar to
that of the matrices G, see (6), G,,, sce
(7}, and &4, see (8), respectively. As
a matter of fact, the verbal description
of these ®d-matrices is almost identical
to the description of the correspanding
G-matrix, provided of course that the
parameter g = 3*¢/dx’ + 3 ¢/dv? has
been replaced by ¢.

A square matrix of order 1, such that
only the first four elements of its first
row and the last four of its last row are
different from zero. The values of these
elements are equal to a multiple of the
coefficients multiplying the four un-
known ¢-values in the expression giv-
ing the second normal dernvative of ¢

(14}

(15)

(16

(7

(18)

at the boundary; see, e.g., (4) or (4a)—
in particutar, for (p, ¢, ». 5) = (1, 2,

3, 4y
(NI‘)].I = (NP)IJ.I' = 576
Nz = (N = —216
Ny = (N = 64
Noha= Nl = —9 (19

Using notations (14) 1o (19) 1t is possible to express G, and
G, in terms of SO, ;.. $D, 4. FD,,,. FD . @, ®,, and &,,.
These expressions, which constitute in effect the compact form
of relations of the types (3a), (3b), (3c).and (4a), take the form
{’ stands for the transposed of a matrix):

G, = SD., + (1723 —415®, — 300k - FD,, + ON},]

+ O (20

G = 3D, 0+ (UWT2k)[—415P,, - 300 - FD 0+ N P]

+ O (20
The discrete model of Vg = fis now formed after replacing
Gy, and G, in (13) by their equivalent expressions (20) and
(21}, respectively. The result of such a replacement is

KANKR[G] + (1/721)A(4. DON., + N, DAL, 1)
= (6M)[F + (INDE VIE ~ G. + 0UM] ~ [A4, DSD.,.
+ 5D, 44,4, D] (22)
+ (/T20)A,(4, 1) - [415D,+ 300k - FD, )
+ (172041 5D,, + 300k« FD, 0]+ A&, 1) + O

The next step in constructing the discrete model of (1) is fo
form the discrete equivalent of V¢ = g and combine this with
(22). The only additional matrix which must be introduced in
analogy to (G.—see (9)——is now the [ > m matrix &, whose
four “‘corner’’ elements only are different from zero and are
given as

@, (D) (B s (P}

(23
- {d’u.m d)n.m—.l . ¢l+!.m+l L] ¢.’+I.o}v ) )

Again employing Eqg. (10.3) of [2] and keeping in mind that
V¢ = g and Vd = £ it is possible to express the fourth-order
discrete equivalent of Vi = g as

KANKR[([)] + A!(4! 1}(D.’r + (I):m‘Am(4' 1) + (DL (94)
= (6hG + (I2)RF + OHY] 7
Finally, the elimination of the { X m matrix & from (22} and
{24) leads, after a rather tedious but straightforward procedure,
to the relation (25) which expresses the fourth-order discrete
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equivalent of (1), as far as the first biharmonic problem in a
rectangle ¢ X b is concerned:

KANKR|KANKR[®]] 4 (1/12)[A,(4. NDN], + N, DA, (4, 1]
= K| F + (12 VOF — G, 1 + KANKR[{I/DFF
— A4, DD, + DAL, D] = (A4, 1) - (6R)SD,,
+ (6h)SD 0 A4, D]
+ (1N2A,(4, 1) - [415®,, + 300% - FD, ;)
+ (1/12)[415D, + 300k - FD 41+ A4, 1).

Setting KANKR[KANKR[ ]] = KANKR?[ | and denoting
the righi-hand side of (23) as Fyu, the fourth-order discrete
equivalent of (1) takes the form

KANKR D] + (1/12)[4,(4, DN, + N, DA, 4, 1)] = Fum.
(26)

3. THE TRANSFORMED MATRIX EQUATION FOR
FOURTH-ORDER SCHEMES

Alithough (26} is the final discrete mode! for (1} concemning
the first biharmonic problem in rectangles, the unknown ! X
m matrix 9 will not be directly computed from this model but
through the computation of another / X m matrix X whose
elements are linearly dependent on those of &.

Toward this end (26} is first premultiplied and then post-
multiplied by the matrices V, and V,,—see {1 1)—respectively,
resulting in

VA (—10. DAL= 10, HD + A0, YDA, (0. 1)
+ DA, (— 10,4V,
+ V44,(0, DA (— 10, dyd
+ A,(0, DDA, (0, 1) + DA, 0, DA, 0, DV,
FV, A (=10, ) + A,(0, NDA, (0. 1) + DA, {—10, 2)
+ DAL~ 10, 4V, +(H/I12)V, A4, DDON',
+ N PAE, DIV, = ViFun V.

Since both V, and V,, are orthonormal, the above matrix equation
can be equivalently written as

ViA; (=10, 4)V; X [VA(=10, HV(V,DV,)
+ VA0 HV(V,OV,)V, A0, D)V,
T (Vi PV. VAL~ 10, )V, ]
+V,A,(0, DV, X [VA (— 10, HV(V,DV,)
+ V,A,(0, DV, (V,DV,)V,A,0, D)V,
+ (Vi(DV, )V, A, (- 10,4V, ] X V,A,(0, )V,
VA0, HV(V, V)
+ ViA 0, DYV OV, )V,A, (0. 1)V,
T (ViOV.)V,A,(—10, HV, 1 X VA, (10, 4V,
+ (I112)[VA,4. DV (Vi DV, IV, NV, ]
+ (VIDBVINVIVRV,)V,A,(4.DV,] =

(28)

V.’ Fk;mkr Vrn .

However, due to the fact that V A {a, BV, is in effect, the
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diagonal matrix D,(a, B} of the eigenvalues o + 283
cos|jmi{v + D] (= 1,2, ... ¢}of the v X p matrix A.(a,
3), as it is apparent from (11}, the matrix equation (28} can be
written using the additional notation

VI(D‘/m =Y (29)
as
Di(—10, 49D~ 10,4)Y + D0, 1) ¥D,(0, 1)
+ ¥D, (=10, 4)] + D,(0, DN[D,(—10,4)Y
+ D0, )YD,{0, 1) + YD, (=10, 41D, (0, )
+ [D:(—10,4)Y + D0, HYD, {0, 1) (30)

+ ¥D,(—10,4)1D,(—10,4)
+ (MDD, @, DYV, NV,
+ VﬂN.'V!Dm(d" ])] = "/.'Fkankrvni-

In the above equation the two matrix products VNV, and
V,N;V, may be written i a way that will help in providing
guidlines for a quasi-direct method for the solution of the final
transformed version of the discrete model of the prebiem.
When examining the form of the vxpy matrix V. NV ,—with
N, given by (19)-—for (p. g. #. s5) = (1, 2, 3, 4}, one should
keep in mind that the elements /, j and i{v — j + 1) of the
symmetric vxv matrix V, are equal to [2/(y -+ DI sinfijm /(v
+ Dland (— 17 2/( v + 1)]"sin [ij7/( v + 1)], respectively.
Using this informution one can prove in a direct fashion that

(VI'N;NI')U = 2[576(V.);1 — 216(V,);» + 64(V. ),

+ (_ | )H-j—l

1 (1)
- 9( VV)1.4] 2

(vu)l.j'

By means of the symbolism,

E, = A diagona) mairix of order » with elernents equal to
(IADUIS2(V,) — 4320V, F 12B(V, 00 — 18(V)),.)
(i=1,2,..,v); (32)

. = A symmetric vx v matrix such that {Q.);

= (1 + (— 1)""1)/2; i.e., a matrix such that only the {j
elements with / and j of the same parity are non-zero
and equal 1o 1: (33)

S, = adiagonal matrix of order v with elements equal to

Vo), G=1L2,.. vk (34)

one can see that relation (31) is equivalent to

(VANV) = VNV, = 12E.0.5.. (35)
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The replacement of V,,N,.V,, and V,N,V, in (30} by their equiva-
lent expressions 12F,0,.5,, and 125,Q,E,, respectively, results in

D= 10, H[D(—10, DY + D0, 1)YD,(0, 1)
+ YD, (—10,4)]
+ DO, DD —10,4)Y + DO, DY DO, 1)
+ ¥D,(— 10, 4)D,(0. 1) + [D(— 10, 4)Y
+ DA0, DYD,(0, 1)
+ YD, (—10,4)]D,(— 10, 4)
+ [Di(4, DYE,Q 5.,

+ S,Q,E{YD,,,(q', ])] = Vkaunkr‘/Jri'

(36)

At this point one may observe that both the diagonal matrices
E,. and §, are composed of positive elements when (p, g, r, 5)
= (1,2, 3, 4). For §, this is obvious, due to the fact that sinfja/
(v + [)iis positive for j = [, Z, ..., v. As far as the matrix £,
is concerned, it is noted that due to (11) and (32) its ith element
equals a positive multiple of the expression R = 576 sin 8 —
216 sin 28 4 64 sin 36 — 9 sin 46 with 8 = in/(v + 1)
(i =1,2,.., »). Using elementary trigonometry one may replace
sin 20, sin 36, and sin 40 in R by 2 sin 0 cos 6, sin 8(4 cos®
# — 1), and 4 sin @ cos #(2 cos’® — 1), respectively. Such a
replacement leads, after some elementary algebraic transforma-
tions to the relation R = 4 sin 8-[29 + 46 cos’@ + 9(1 — cos
(1 + 2 cos*8)] > 0. (QE.D.)

Aiming next at a more compact expression for the final
discrete model of the original p.d.e. {I), cne introduces, by
means of relations {37) to (41), a number of matrices which
will help to express it concisely:

Y=E"'XE,",

DKANKR[ [ = DA~ 10,43 ] + D0, OH{1D,.(0, D
+ [ 1D,(—10,4) with[ ] an {xm matrix;

(37)

E.S,=Z, adiagonal vxrmatrix with (38)
positive entries for (p, g, r, 5)
={},23,4)
D4, DEJ'S; = 1T,, adiagonal vxy matrix with (39)
positive entries for (p, q, r, 5}
=(1,2,3,4) (40)
Sl‘lvleunkr‘/me;I = RHS (41)

Relation {36} is now premultiplied and postmultiplied by the
diagonal matrices 87! and S,,', respectively. The result of such
an operation, after taking into account (37) to (41) and. in
addition, the fact that both E; and Dfe, 8), as well as E, and
D.(a, 8 commute, is

Z7-DKANKR’[X]-Z;' + T, XQ, + O XT,, = RHS. (42)

The latest relation constitutes the final version of the trans-
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formed discrete model of (1) when {(p, ¢, r, 5) = (I, 2, 3. 4)
whose solution X will eventually lead to the unknown /lxm
matrix @ by means of

b = VEXE,'V,, (43)
after combining (29) and {37).

Apart from its compact expression (42) the transformed
model of (1) can be written conventionally as a product of an
({xm) X (Ixm) coefficient matrix premultiplying an (Ix»1)
X 1 vector of unknowns equal to an ({xm) X | vector of
known quantities.

Assuming that both the (/xm) X | vectors of unknown and
known quantities are composed cof the m consecutive columns
of the Jxm matrices X and the RHS, respectively, the {{xm) X
{{ xm) matrix of coefficients A* (the **big matrix’” as it is called
in [1]} is given as

A*¥ = (Z,'RZ "1, B D—10,4) + D,0. 1) @ D(O, 1)
+ Dm(—lor 4‘)@1!]2 + Qm® ]r.‘ + Tm®Q.’

or

A* = (Z7 @ Z I, & D(—10,4) + D0, 1) RDL0,1)
+DA-10. QP +1,DT, (44a)
+ 7—:n®1f + (Qm - [ﬂv:) ® T:‘ + Tm® (Qﬁ - [!)

with /, and & standing for the unit matrix of order v and the
symbol for the tensor product, respectively.

Due to the structure of (44aj it is evident that A* is a symimet-
ric (Ixm) X (Ixm) matrix composed of a purely diagonal
part,

(ZVRZHL, @ D= 10,4 + DO, DH R D0,
+ D10, MDD+ LT, +T,Q1,

and a symmetric complementary part, (@, — L)@ T + T, &
(Q; ~ I, with zero diagonal entries.

Since it has already been proved that the elements of the
matrices S, and E, are positive and that the same holds for
those of D4, 1}—i.e., for the quantities 4 + 2 cos[jm/ (v +
13]—it follows that the elements of the diagonal matrices Z,, =
E.5,and T, = D4, DE;'S;" are positive as well. Consequently
the {xm entries ¢;; (for j = 1,2, ., mand i = 1,2, ., [) of
the purely diagonal part of A%, namely,

¢y = (ZTAlDA—10, 4); + [D(O, DI{D(0.1)];

+ D~ 10, DL REZ ) + (T + Ty 4D
i.e., Cij = d,J + (T[),‘ + (T‘m)‘; with
= =1y — 4 4 D;(,, i o .,‘ i
4= (ZADC=10. 41 + (DO DDA DY o

+[D,(=10, HIF(Z,");
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are positive as well.

The fact that the transformed discrete model (42) when ex-
pressed in conventional form is equivalent to a symmetric linear
system, with a coefficient maltrix having positive diagonal en-
tries, might suggest the employment of the SOR method to
solve it.

As a matter of fact, according to the Ostrowski—Reich theo-
rem, convergence of the SOR iterative scheme is certain when,
in addition to the above characteristics, A* is also positive
definite [2]. lgnoring for the moment the spectral characteristics
of A* such an iterative scheme for the model (42) may be
expressed as {1 < o < )

Initial stage:

(i}

X;=0 (forj=12,.,mi=1.2,.,1) (46a)

Stage (r + 1)

n+l} tn)

X,-j = (] - w) Xij + w{(RHS)U

() ! 1)

i—1
- {E(Q:)u X g+ D (0 XAJ]-(T,,,)j
k=1 k 1 {46b)

i=7r

=+

Fil RVEAN LTI
- (T!)l' {; X H\(Qm)kj + AZ Xlk(Qm)kjjl}/C»j

(fforj =12, ..mi=1,2_.,0.

Turning now to the assumption of the positive definitness
of A¥, it is noled that such an assumption seems more or less
reasonable, since any eigenvalue of (42)—which obviously
coincides with an eigenvatue of the source model (26)—
may pe identified with a positive multiple of one of the
natural frequencies of a plate with all its edges clamped.
Anyhow, irrespective of the validity of the above assumntion,
the numerical experiments showed convergence in all cases
where the SOR method was applied. Apart from applying
the SOR method, there is also the possibility of solving (42)
by means of a quasi-direct method as described in the
next section.

4. SOLUTION OF THE TRANSFORMED MATRIX
EQUATION FOR FOURTH-ORDER SCHEMES BY A
QUASI-DIRECT METHOD

Before attempting a detailed presentation of a quasi-direct
method for the solution of the discrete model (42), it seems
reasonable to examine the structure of the model itself, since
this may be of help in suggesting some key features of the
method in question. In this context one should have in mind
the special role played by the two matrix products X and
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X@,,. In order to clarify such a role one first defines k.4 and
k..o a8 the number of odd and even numbered elements, respec-
tively, in the set {1, 2, 3, ..., k — 2, k — 1, k} and satisfying the
obvious condition that kg + k... = k. As far as the structure
of the matrix @)X is concerned, it is noted that all the jth
elements of all the odd-numbered rows of it are equal to
S x,,-,. while all the jth elements of its even-numbered
raws equal Ziﬁ;“; x2,;. Similar remarks hold for X@,, in which
all the ith elements of its odd-numbered columns are equal to
2 %0, and all the ith elements of the even-numbered col-
umns of it are equal to 20 in-
Next, the symbolism

"ndd
Cr = (2 x;i._.J)-(Tm), G=12..m @7
=]
’e\en
C_r = (E 'x'lv.j) '(T'm)j (j = ]7 2‘ Tt m) (473)
»=]
Ry = (T,).-(E x,.y-.) (i=12..10 (48)
r=]
£ = (T (2 r) (i=12,..0h (48
r=1

is introduced which, combined with (45a). helps to express
(42) in the form

(QXT,)
~ ) . ToCy oL Cr o G T
c. ... C ... C
LdyX |+
L il L il
(rXQ.)
[ Ry Ry LT i 7
+ R" R = | ...(RHS),... (49)
I A N

A direct consequence of the latest equation is the expression
of X in terms of the 2( + m) unknown parameters (€7, C?)
and (R}, RY) for j = 1(1ym and i = 1{1)L.

More precisely, it is easily seen that (49) may be equivalently
written in the form
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B N (4 C L ARG dn T
d='Ci ... dy'Cy L d5a G,
Xff’ +
\_ ' - - " -
di'ry anr; 1T i
di'R: dB'RS ..
+ d;,;R'.’ d:llR? =(...d; (RHS);...[. (50)
Ldr]'R'; dn'Rs ... L

The latest matrix equation will play a key role in producing
necessary conditions which will eventually lead to the calcula-
tion of the 2(! + m) unknown parameters (C¥, C¥} and
(RY, R).

Towards this end, X is written as (XT,)7T,' and (50) is
premultiplied by @, This premultiplication results in the
following matrix equation (51} in which for each participating
matrix, all the odd-numbered rows of it are identical to its
first row, while ali its even-numbered ones are identical to
its second row. For this reason in presenting (51) only the
first two rows of the matrices of the left-hand side are
shown:

2A -1 2A
(T aa-1 " Crms (Ta'hau - Ch .

Column:

(T-;')u—l O (T;;')za < C5,

r I

[y
(2 dfv‘l.u—l) < Chi

v=1

foad L
(ZI dZ_yI—I.EA) Y,

+ foan doven
E A5 ) Coan E diy |- Ch
=1 r=1
r Todd i 0
2 d’l_pI—I.EJ\—\ "R%., E dz_»l—l.zf\ ) R;:-—I
v=1 v=1
+ . e loven

Z dria-1 RS,
»=1

= Qi [d;(RHS),].

2 da b RS,
r=1

(51)
By equating the corresponding elements of the two sides of

(51}, 2em independent linear equations are formed relating the
2(0 + m) unknown parameters (CY, C§) and (R}, RY)
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for f= [(1ymand i = I(1}/. In order 10 express the set of these
2m relations in matrix form one introduces the tollowing no-
tation:

D¢ = a diagonal matrix of order m such that

fts

(D)= (T0+ 2 dilg (52)
r=1

D = a diagonal matrix of order m such that

"‘\l‘ﬂ
(Do), = (TN, + > dslys (33)
v=1

T
Il

- an mxl matrix with non-zero elements only
at the intersection of the odd-numbered rows
2k — 1 and odd-numbered columns 2A —
1 and such that

(Ao 120m1 = dnl a0 with
x = 1{])m and
A= 1) Ly

{54)

A,, = an mx! matrix with non-zero elements only
at the intersection of the even-nuimbered
rows 2 k and odd-numbered columns 2A —
I and such that

(A )zersmr = dnl o with
Kk = I(1)ym,., and
A= M s

(53)

A, = an mx{ matrix with non-zero elements only
atthe intersection of the odd-numbered rows
2x — I and even-numbered columns 2 A and
such that

(Aup)sician = dafz - With
& = {(1}ym,yand
= W) e

(56}

A, = an mx{ matrix with non-zero elements only
at the imtersection of the even-numbered
rows 2« and even-numbered columns 2 A
and such that

(Ahenn = dily, with
k= 1(1) M., and

A= {1 e

(57}

Ue, U = the mxl vectors of C"sand C}’s, respec-
tively:

(58)
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Ve Ve =the Ix1 vectors of R"s and R;™s, respec- (59)
tively,
a’ = the mx1 vector of the known quantities
fod
> di)y ;- (RSH), -, withj=1(hm;  (60)
=l
a = the mx | vector of the known quantities
"f‘\'\“ﬂ
> dil;-(RSH),; withj=1(1)m. (61)

v=1

By means of relations (52) to (61}, the matrix equation {51)
becomes equivalent to the following linear system:

o+ ANV ANV = (62)

D+ AV + AV =g (63)

Before presenting another pair of equations similar to {62) and
(63) which, together with the former ones, will lead to the
computation of U4 ¢, V. and V°, one should make some
remarks on the structure of the coefficient matrices D¢, D49, A,..,
A A, and A,

First the elements of all these matrices-—at least for p, g, 1,
and s equal to 1, 2, 3. and 4, respectively-—are positive since
they are given by (45a) and the elements of the dtagonal matrix
T,' are also known to be positive. In addition, due to the
structure of 27 and D¢ one may conclude that every (diagonal)
element of D¢ is greater than the sum of the elements of A,
and A,, which lie on the same row, while every (diagonab)
element of D¢ is greater than the sum of the elements of the
matrices A, and A, lying again on the same row with it.

The next step in trying to form the linear system for comput-
ing the 2(/ + m) unknown parameters (Cy, C}) and (Rf, RY)
with j = I{Dm and { = I(1), is to write X as 77Y(7X) and
postmultiply (50) by (,,. The result of this operation is a relation
analogous to (51) in which for each participating matrix all the
odd-numbered columns of it are identical to us first column,
and all its even-numbered columas are identical to its second
column.

Employing a similar procedure to the one that resulted in
(62) and (63). one may prove that

AU+ AU+ DWW = (64)

ALLP + ALUS + DoV = b (65)

(' stands for the transpose of a matrix).
In the above relations the meaning of the {x{ diagonal matrices
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D¢ and D¢, as well as that of the Ix 1 vectors b” and b7, is made
clear through the notation

D¢ = a diagonal matrix of order ! such that
Py

(D), = (T7"), + 2 dzhi:

(66)
D¢ = a diagonal matrix of order { such that
(DD = (T7), + 2 dids (67)
v=]
& = an {x1 vector such that
iﬂ“,o
(Zh— =1 . . H
()= 2 didys - (RHS)y with (68)
i=1,2,..1I
b = an x| vector such that
A =1 . . i
()= 2 di3,- (RHS);,  with (69)

i=1,2, .., L

Again it is noted that every (diagonal) element of D} is greater
than the sum of the elements of A, and A, lying on the same
row and every (diagonal) element of D; is greater than the sum
of the elements of A, and A’,. lying on the same row with it.
All the above remarks lead to the conclusion that the linear
system relating 7, U, ¥, and V* and composed of (62}, (63),
(64), and (65) is symmetric and—due to Gershgorin’s theo-
rem—rpositive definite. Next, V’ and V* are expressed from (64)
and (63) in terms of U and U and these expressions are inserted
in (62) and (63). The final product is the symmetric sysiem

lDl(, - Arm - (D';)_I ' A:m - A(‘u i (DT')_‘ ’ A:n} o
(A, (DAL AL (DT ALY am
= a,: - Arlu ) (D::)_I -b - Awi : (D‘r)—l b

- [Am’ N (D:’)—I : A:’m + Aee : (L)‘r)_1 : A::n}U"
+ [D:‘ - Am' . (D'r')“I ‘ A,’:,. - Aec . (D:)_I : A:e} v (71)
=a — A, (Db - A (D) b
However, due to the structure of the matrices A,,,, A..., A.., and
A,. as described by (54), (55), (56), and (57), respectively, both
the products A,,- (D971 A7, and A,,- (DO A, are equal to
the null matrix of order m and consequently (70) and (71)
become equivalent to the symmetric systems (72} and (73) of
order m:

[D:) - Am ) (D:',)_I 'A:’m - Ar’(l " (D;‘)_I ) A;u] L

=a" — A, (DY A (DT b (T2)
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[D{— A (D97 AL — A (DO ALLUF
=a — A, (D) b — A, (DT (73)

Both the linear systems (72} and (73}, apart from being
symmetric, are also positive definite. The proof for this, e.g.,
as far as the systemn (72) is concerned, might be sketched
as follows:

Due to the structure of D¢ and A, as expressed by relations
(66) and (54}, respectively, the sum 5., of all the elements
in the 2k — | row of the mym matrix A, - (D%~ - A',,—which
is & matrix that contributes only to the odd-numbered rows of
[D?— A, - (DY VAL~ A, - (DD - AlL]—1.e, the sum

fad #lodd
Sz = ZI d)- e {; (0280 'Ar’m]‘_’v—].b\l} {74)

may be written in the form (k = 1, 2, ..., #gs)

f, Mg

% — dl_l'I—I.ZA—l
Sapm1 = zi dr) ) 2em Z

= h o

=1
(T"‘l)lv*l + : .{ dl_vl‘l.f,u—l
=

{ —
g B (T7)a-1
Moy

(T.’_w)lp—l + E] dﬁ-yl—hlp—l
=

(75)

On the other hand, using similar arguments one can prove that
the sum §., of all the elements in the 2 x row of the rxm matrix
A - (DO - Al,—which is a matrix that contributes only to
the even-numbered rows of the matrix [D¢ — A, - (DD -
Al — A, - (DD - Al ]—ie, the sum

Lo

Sa = 2 dz—.-'=l,.3.\-' {; [po™ 'A:w]?zh}.l’/l}

r=]

(76)

may be written as («k = 1, 2, ..., M)

! "
ki =1
g - dlv—l.?:\

SZK = 2 d'.’:’-l.h ) 2 in

r=1 A=

even

i
(T2 + 2 dulia,
p=l

Lot -1
.-
= > dylin| 1 = (’ﬁ'
r=1

even

(T.'_])Zl‘—l + 21 dl_lj—l.lp
v=

(77)

had

<2 diiae

v=1
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Having in mind (52), (75), and (77), one may now conclude
that all the Gerschgorin circles of the symmetric (and for that
reason with real eigenvalues) puon matrix [D2 — A, - (D)7
CAlL, — A, (DY A ] lie in the right-half plane, which in
effect means that this matrix is positive definite.

Once U and U° have been determined as solutions of the
systemns (72) and {73), respectively. relations {64) and (63) may
be used to determine V* and V* through the formulas (D7 and
D¢ are diagonal)

Vo= (D [0 — AL U] an

ve= (Do) -[be— AL U — AL UL (78)
Obviously, instead of choosing m as the order of the two linear
systems for determining U and UF, one may slightly modify
the analysis so that first V' and V¥ are determined by solving
two symmetric and positive definite linear systems of order /
and then U" and U are computed by means of (62) and (63),
respectively. Aiming at the lowest possible order for the two
symmetric and positive definite systems which lead to either
(U, Uy or {V°, V), it is obvious that one should employ the
procedure related to the minimum of the indices { and m.

Having U7, U® V°, and V* it is now possible to compute all
the elements of the Ly matrix X by means of (50) and, finally,
the elements of the matrix @ itself, using (43).

5. NUMERICAL EXPERIMENTS ASSOCIATED WITH
FOURTH-ORDER SCHEMES

In this section both the quasi-direct method and the SOR
iterative procedure are employed to solve four biharmonic prob-
lems of the first type in the square 0 = x, v = . These
problems are

Problem 1:

VW h =8 withd=x(1 —x)-v(l —y). (80
Problem 2:
ViV =0 withd=x"—v +xefcosy. (8l)

Problem 3:

VOV = 8[3%(1 — x)° + 351 - y)?
+(6xr —6x+ 16y —6v+ 1)) withed (82)
=21 —xy-y(1 —y)

Probfem 4:

VY = (2m)°]4 cos(2mx) cos(2my)
—cos(2mx) —cos(Zmy)] with ¢
=1 — cosux)|[l — cos(2my)].

(83)
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TABLE 1
Problem: t 3 4
1/h £ & E
Ejum &1y Eqiny Sy
5 11(=7) S55(-5) ST -4 19(0)
— 94(—6) A0(—4) AT(—13
g S6{-T7) A3 -5 B4(—5) -1
— B8—6) A6(—6) 26(—2)
1 A1~ (*)oap 3K =35)y, RIVEED]
16 34(=7) (*)ap (*)op A6(—2)
_ * * 15¢—3)
20 17(—6) *)ogp o 65(~3)
25 16(—6) (*ap () 27(—3)
32 12(—6) )y (hop A0(=3)

All numerical tests were run on an AMSTRAD 1512 XT per-
sonal computer using a FORTRAN compiler with a (single)
precision accuracy lying between 107° and 1077, A series of
discretization steps & = %, &, . 18, 3. 35, and 33 (after which
the influence of rounding on the computations could not be
avoided, even in double precision) has been selecied and the
results concerning the employment of the quasi-direct method
and the SOR iterative procedure are summarized in Tables 1
and [,, respectively.

The results consist of the maximum absolute discrepancy &
between the known and computed solutions and, in addition
{when the SOR is used), the optimum value w,, of the relaxation
parameter, as well as the number N of iterations required,
so that the maximum absolute deviation in two consecutive
computational stages equals 107¢

The above optimum value w,, is determined by an experi-
mental approach. More precisely the corresponding computer
program is run for a series of 10 relaxation parameters in the

TABLE I,
Problem: 1 2 3 4

Wy Wy CWopt Ly
I/h € N £ N £ N € N

5 AU—=7 1.1 B5(-3) 1.0 STH—-4) 1.1 19(0) 1.0
12 17 10 17

8 S56(=7) 1.0 A8(—5) 1.0 85(—5) 1.1 26(-1) 1.0
18 18 15 21

10 =7 0.9 Fop 3=y 1.0 A0(=1} i.0
20 17 25

t6 471} 0.9 P Fap A6(=2) 1.0
22 36

20 22(—6) 0.9 (Flap (" 63(—3) 1.0
24 42

25 A9(—6) 0.9 (*lg (*)oap 27(=3) 1.0
28 49

32 A6(—6) 0.9 (*)ogp (*)oap AT0=3y 1.0
32 60
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interval 1.6 1o 0.7 in steps of 0.1 and the one associated with
the minimum number of iterations is recorded. From the data
cited in Tables I and 1, it may be deduced that the observed
accuracy (at least for the problems considered in this paper) is
of fourth order.

In order 1o check the reliability of the solution a set of
corresponding e-results from [10}—designated as gq—have
been included in Table 1. At this point one may observe that
the structure of (42) is such that the minimum of the indices /
and m must not be less than 4 and consequently it is not possible
to use a discretization step h (=1/(/ + 1)y or [/(m + 1)} equal
to + as in [10]. For this reason a set of fictitious *‘results,”’ £,
has been produced from the results &, in [10] associated with
h = 4, so that. finally, € is set approximately equal to =
ey-(4/5) after taking into account the fourth-order accuracy
reported there.

In producing the results in [10], a DEC-20 computer has
been used with a single-precision accuracy between 1077 and
107%—see [2]—and the symbol * in Table I denotes the influ-
ence of rounding errors on the single-precision computations
for that particular computer. On the other hand, the symbol
( )4p denotes the employment of double-precision accuracy in
the AMSTRAD 1512 XT personal computer so that the fourth-
order accuracy of the particular problem can be maintained.

Finally the symbol (*},4, in some entries of both Tables I
and §, means that the results are influenced from rounding
errors, not only in single, but in double precision as well,
provided of course that an AMSTRAD 1512 is used. From the
data presented in Tables 1 and 1, it is seen that the results, apart
from showing fourth-order accuracy, exhibit more or less the
same general behavior as those cited in [10] and, without being
unacceptable. they are roughly one order of magnitude less
accurate than the latest ones. The results referring to Problem
1 seem to be influenced only by rounding errors. Probably this
is due to the fact that the structure of this problem is such that
the difference equations of the non-coupled (p,q) model are
exactly satisfied by irs solution—see [5]—and perhaps this is
somehow reflected in the relatively small values of . Similar
behavior was shown in the problem V:¥W'¢ = () with ¢ =
¥ — 3y + 2xy whose non-coupled (p.g) model is again
satisfied exactly by its solution {6). However, the results for
this problem have not been included in the tables.

As a final remark on the results cited in Tables I and I, one
may note that the processing times for the quasi-direct method
range from about 2.5 s (h = 410 200 s (h = 3%) and that these
times are roughly doubled when the SOR method 15 em-
ployed.

6. SECOND-ORDER SCHEMES

In deriving schemes with second-order truncation errors the
discrete equivalents of Vg = fand V3¢ = g are again combined
in a single model, but now the Laplacian is approximated
through 3-point stencils of the type
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h/h,

h/h, —2h/h + kb)) B/hy

hJ/h,.

The above stencils are related to a rectangular grid having lxm
interior nodes with mesh sizes #, = a/{{ + 1) and /1, = b/
(m + 1), where ! and m stand for the number of equidistant
subdivision points of the edges « and b, respectively. The
possibility of two different steps, #, and A,, may be proved
advaniageous for some peculiar values of the ratio a/b.

The process of constructing the matrix equation in this case
is identical in principle to that described in Section 2, provided
of course that the values of g = @*@/dx® + & dlay’ at the
boundaries are expressed as second-order linear combinations
of either known or unknown ¢-values and normal ¢-derivatives
at the boundaries in question. The most important components
of such approximations are derived by means of the (1, 2)-
approach—see [5.6]—and actually are relations of the type

(Pl y i
:[_?d);ﬂ + 8(‘5,‘_1 - (ﬁ,“z - 6/1‘(("(’{)/5}'),,,]/(2h|2) + O(h\g)

(84)

on which—Ilike (4a)—the construction of the whole discrete
mode] is finally based.

The form of the final version of the transformed discrete
model of (1) with a second-order truncation error is analogous
to (42} and it will be simply put down without any attempt to
repeat again the basic steps leading to its derivation. However,
before such a presentation can be possible, a number of matrices
must be intreduced which will clarify its meaning. Some of
these matrices play the same role as that encountered in fourth-
order models and for that reason even their names will remain
unchanged, although they are used in a different context. When
this is the case, the number of the relation giving the previous
definition of the symbol concerning the fourth-order schemes
will be recorded as well. In this way the following additional
notation is introduced (u = h./h, )

LAPL]|

1= uA(=2, D0 1+ pu7 (85)

Fup = (hh, ) F — LAPL[®, + &,
o (h(h)‘)[SD,r.i‘r + SD_V.mI]

[A.(—2. 1)

+su 7Dy, + 6k, - FD,,] (86)
+ %.u'['?d)u.d + 6"1\" FD\.H(.']
E . = adiagonal matrix of order v with elements equal to  (87)
F16(V,), — 2(V,)2] fori= 1(1)p;secalso (32)
E.'S;' =T,= Z;' = adiagonal matrix of order » with
positive elements for (p. ¢) = (1. 2); (88)
see also (39) and (40)
DLAPL{ 1= puD(=2, D[ 1+ u7'[ ID.(=21) (89
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ST'ViF L VaS, = RHS;  see also (41) (90)
&= (TUDC-2. 0L+ w7 (D=2 D (T, )
+{T); + (T} seealso (45)
or
c; =dy + (1) + (T} withd;
= (E}.‘H{I‘LID(_Q! 1)]1 (913)

+u T D2, DT see also (45a),
By means of the already introduced additional symbolism, the
second-order discrete model for-the first biharmonic problem
of {1} in a rectangle axb is written
T;-DLAPL? [X]- T, + T,XQ, + Q:XT, = RHS. (92)
The elements of the Lon matrix X can be determined from
(92) either by means of a quasi-direct method quite similar to
that introduced in Section 4 or by employing the SOR iterative

procedure, After X has been determined, the Lxm matrix @ is
computed using (43).

7. NUMERICAL EXPERIMENTS ASSOCIATED WITH
SECOND-ORDER SCHEMES

In Tables II and 1la results concerning the processing of
second-order schemes and derived by means of the quasi-direct
and SOR methods. respectively, have been recorded. The same
test problems 1. 2, 3, and 4 and the same domain 0 < xy <
I, introduced in Section 5 for fourth-order schemes, are used
in the present case as well.

The discretization steps (A, = h, = h) now equal 1, £, 4, 16,
76, 35, 75, and 5, while the form of the data in Tables II and II,
1s analogous to that referring to Tables I and 1, respectively.
More precisely, the results consist of the maximum absolute
discrepancy & among the known and computed solutions and,
in addition (when SOR is used), of the optimum value w,,
of the relaxation parameter, as well as the {(experimentally
determined) number N of iterations required, so that the termi-
nating criterion equals 107°.

In order to check the reliability of the quast-direct method
anumber of corresponding e-resuits from {6. 10] and designated
as &5 and g, respectively, have been included in Table II.
The nccessary checks for the SOR method refer to both the
vaiue of = and the number N of iteratipns. For this reason in
Table I1, the £ and N resuits from Ref. (3, 6] have been included
which are designated as (g5, &) and (N5, N)), respectively.

All the symbols *, (g)g,. and (*),4, that may appear in Tables
[T and I, retain their meaning as described in Section 3. Double
precision has been used when the results in single precision
were not in agreement with the ones reported in Refs. [5, 6]
which have been derived by means of a mainframe computer
(e.g.. an IBM 370/158 in [6]) or when the resulis themselves
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were influenced by rounding errors. The processing times—
referring to an AMSTRAD 1512 XT personal computer—range
from 1.5 s (h = 3 to 35 s (h = 35 when the gquasi-direct
method is used, and these times are roughly doubled for the
case of the SOR method.

Finally one may observe from the data cited in Tables II and
I1, that the accuracy of the schemes is at jeast of second order
as it should be [3, 7].

8. CONCLUDING REMARKS

The computational schemes used in this paper with either
fourth- or second-order truncation errors lead to results with
accuracy of the same order as can be seen from the results of
the numerical experiments. When the structure of the discreie
model of (1) is associated with fourth-order truncation errors
the observed results, although revealing fourth-order accuracy
as well, are roughly one order of magnitude less accurate than
the ones reported in [1{)].

As has been stated already in the Introduction the excellent
accuracy reported 1n §10) may originate from the very structure
of the discrete equivalent of (1) through the use of a triplet of
nodal parameters which leads to a much better substitute for
the original problem than models with a single nodal parameter.
However, due to the increased number of unknowns, memory
requirements, as well as the compiicated structure of the re-
sulting difference equations, limit the applicability of the
method, while in cases where iterative procedures were used,
convergence was very slow and sometimes it was not achieved
at all.

It seems that the above weak points of the numerical pro-
cessing in Stephenson’s method constitute the price one must
pay for its highly accurate results and that as stated in {10] **it
is necessary lo develop suitable solution techniquess that take
advantage of the block structure of the resulling system of
equations.”” Such a goal has been partly achieved by the solution
techniques developed in this paper by presenting a quasi-direct
solution method and a compact iterative scheme for systems
of difference equations with one nodal parameter. Centainly it
would be nice to extend these techniques to the type of models
described in [10]. A possible solution might be the expression
of Hermite's models in [10] as a system of three matrix equa-
tions and then to employ the method presented in [91.

As a matter of fact, it has been possible to formulate a system
of three matrix equations of the type in question. Unfortunately
the consiant matrices participating in this formulation do not
possess a common system of eigenvectors and, consequently,
the extended form of the *“irritational method™ [1] is of no use.

Before leaving the subject of computational schemes with
fourth-order truncation errors it must be noted that the author
was not able to extend the scope of relation (4.5) in [7] or
relation (15) in [ 1 1] which could lead to a theoretical determina-
tion of the accuracy of the (p, ¢, », s) model as in the case of
the {p. q) approach-—see. e.g.. [7]. It was precisely due to this
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TABLE 11
Problem: { 3 4
i/h g [ &
L] Eln) Elg
Efiny ol £y £y
4 A -7 S4(=2) BO(—3) A4+ 1D
— 29(—4) 39(-3) A44(
5 37-8) 7G(-3) 40(—3) 630y
—_ TJ0(=3) — —_
8 BA=T) 193 I5-3 4
— 76(-5) 94(—4) A0}
10 30(—7 85(—4) 87(—4) 23
—_ BB(—4) — —
16 22€-T} A3(—4) 30(—4 93(—1)
— A2(—4) — —
- (-5 26(-1)
20 A3(—6) 49(-5) 18(—4) S8B(—D
— AT—35) 18(—4) 60(—1)
25 200—6) (=5, L{—4) 36—
— — 3%-n
32 16(—6) 19(—3) 63(=35) 2=

absence of a formal proof of the accuracy for schemes with
fourth-order truncation errors that all the statements concerning
the accuracy of models with 9-point stencils were made with
the fourth-order accuracy results of Tables I and I, in mind and
that not any attempt for more general conclusions followed.
As far as the computational schemes with second-order trun-
cation errors one may observe that the results cited in Tables
II and T, confirm the second-order accuracy proved in [7] and
that when SOR is used the number of iterations needed is
substantially less than the corresponding numbers reported in

[5].
APPENDIX

In deriving a fourth-order linear combination of ¢-values at
the nodes (i, ), (i, p), (i, ¢), (i, r), and (i, ) o approximate
e.g., (2D y?),,. the sum

S=Bud t By + Byiy + Bré, + B (AL

is considered and each of the quantities ¢,,, &.,. &, and &,

is replaced by its Taylor series expansion about the boundary
node (i, ¢). For the expansion in question, which includes
derivatives at (/, o) up to the fifth order, one seeks to determine
such values of 2,. B,. B8.. and 8., so that the coefficients multi-
plying third, fourth, and fifth derivatives about (i, o) will
equal zero.

The latest requirement leads finally to the system

I ]
p g rflaB,l=~-5B-|s (A.2)
pl ql '.2 ’JBr Sl

whose coefficient matrix is a Vandermonde matrix of order 3.
Inversion of the latest sysiem, after the basic properties of the
Vandermonde matrices have been taken into account, results
finally in the solution

gBy | = ~ 8B r—g)(r —p) g —p)
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TABLE II,
Prablem: L 2 3 4
tin g Wy 3 0 & W g W
N N N N
&) Nisi &) Ny &3 N Eis) Ny
Eie Ny Elol N Ein M 2 My
4 A~ 1.9 A4(=2) 11 B3 10 REICES) 10
7 9 6 9
5 29(—7) 1.0 JH~=3) 1.1 40(—=3) 1.1 H5(0) 1.1
9 9 8 12
8 2(-7) 1.0 t9(—3) 1.1 15(=3) 1.0 34(0) 1.0
12 13 i 17
10 40(—73 1.0 BT (—4) 1.1 81— 1.0 230 1.1
13 15 il 18
- 71 — — — — — —
16 90(-T) 1.0 (6(—4) 1.0 31(—4) I 9 —1) 1.0
15 23 13 24
— - 23(-4) 42 — — — —
— — 23(—4) 42 — — -~ —
20 83(—6) 1.0 52(—35) 1.0 A9(—4) 1.0 S8(—-1) i.0
16 25 15 28
— 31 . - — — _ —
— — 20(—4) 48 — — — —
25 89(—6) L0 32(=5),, 1.0 A1(~4) 1.0 36(—1) Lo
18 28 le 33
32 25(-6) Lo 20(—5), L AH5(—5) 1.0 22— 1.0
21 33 18 38
- — 26{—3) &3 — — — —
r—g 0 0 B, = —BAs/rYl(s — g)Xs — pY{(r — gXr — p)]
0 r=p 0 ) )
emerge, Since p, g, r, and s are integers, one sets B, = —(rpg )’

0 0 g-p (r—g)r—p)lg — p)sothat 8, B, and B, will take integer

values as well. In this way,
rq  —(r+qg) |1 I

—p rtp) il s | (A3 B, = H(srgP(s ~ ris = q)r=q)
gp —{g+p) 1 ||5 e — _ —
B, (srpY (s — s — pXr—p) (A.5)
from which relations B, = +sgpY(s —g)s —pXg—p)

B.=—(rgpY(r—g)r—pXqg—p)

Bp
B,

=B.s/pYls — rNs — @) (r — pXg — )]
+B.(5/qV (s — r)(s — pYi{r — g)q ~ p}] (A4) and the final fourth-order formula for (¥ Pl dy7);, takes the form

il
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(0 dla vy, =1-(B, + B, + B, + B,
+ Bdiy + B, + B+ B
—h(pB, + qB,+ rB, + sBI@didy),
(0.50%(p°B, + ¢°B, + r'B. + s°BII.
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